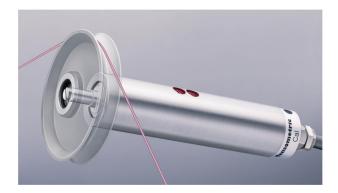


Stand 01/2024


Bedienungsanleitung

1-Rollen Zugkraftmesswertaufnehmer mit eingebautem Messverstärker

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

E-Mail: info@tensometric.de 1RO-MV-D

Gültigkeitsbereich

Diese Bedienungsanleitung ist für folgende Artikel gültig: 1-Rollen Zugkraftmesswertaufnehmer mit eingebautem Messverstärker

Baureihen: LC-1390, M-1391, M-1392, M-1300-20, M-1494-T....

Inhaltsverzeichnis

1 1.1 1.2 1.3 1.4 1.5	Sicherheitshinweise Bestimmungsgemäße Verwendung Qualifiziertes Personal Restgefahren EG- Konformität ElektroG (Elektro- und Elektronikgerätegesetz)
2 2.1	Beschreibung Warnung
3	Inbetriebnahme
4 4.1 4.2 4.3 4.4 4.5	Einbau Einbaulage Befestigung Materialführung Laufrichtung Umschlingungswinkel um die Messrolle
5	Installationshinweise
5 6	Installationshinweise Elektrischer Anschluss
•	
6 7 7.1	Elektrischer Anschluss Einstellmöglichkeiten am Messwertaufnehmer "CAL"
6 7 7.1 7.2 8 8.1 8.2 8.3 8.4 8.5	Einstellmöglichkeiten am Messwertaufnehmer "CAL" "0" Kalibrierung Beschreibung: Kalibrierung auf exakte Zugkraftmessung Beschreibung: Kalibrierung auf exakte Radialkraftmessung Kalibrierprinzip Berechnung des Ausgangssignals Kalibrierungsvorgang: Kalibrierung auf exakte Zugkraftmessung

Umschlingungswinkeltabelle 10

Aus- und Einbau der Messrolle

Wartung

9

9.1

Anhang: Technische Daten "CAL" und "0"

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90 E-Mail: info@tensometric.de 1RO-MV-D

1-Rollen Radialkraftmesswertaufnehmer

zur Zugkraftmessung

1 Sicherheitshinweise

Jede Person, die mit der Inbetriebnahme oder Bedienung dieses Gerätes beauftragt ist, muss die Bedienungsanleitung und insbesondere die Sicherheitshinweise gelesen und verstanden haben

Zur Gewährleistung eines sicheren Betriebes darf das Gerät nur nach den Angaben in der Bedienungsanleitung betrieben werden. Bei der Verwendung sind zusätzlich, die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten. Sinngemäß gilt dieses auch für die Verwendung von Zubehör.

1.1 Bestimmungsgemäße Verwendung

Die Kraft-Messwertaufnehmer dienen der Wandlung von Zugkräften in elektrische Signale. Darüberhinausgehender Gebrauch gilt als nicht bestimmungsgemäß. Diese Geräte dürfen nicht als alleiniges Mittel zur Abwendung gefährlicher Zustände an Maschinen und Anlagen eingesetzt werden. Maschinen und Anlagen müssen so konstruiert sein, dass fehlerhafte Zustände nicht zu einer für das Bedienpersonal gefährlichen Situation führen können. Insbesondere muss sichergestellt sein, dass Fehleingaben, eine Fehlfunktion oder ein Ausfall nicht zu einer Gefahr für Mensch und Maschine führen.

1.2 Qualifiziertes Personal

Die Zugkraft- Messwertaufnehmer dürfen nur von qualifiziertem Personal, ausschließlich entsprechend der technischen Daten verwendet werden.

Qualifiziertes Personal sind Personen, die mit der Aufstellung, Montage, Inbetriebnahme und Betrieb von elektronischen Messgeräten vertraut sind und über die, ihrer Tätigkeit entsprechenden, Qualifikationen verfügen.

1.3 Restgefahren

Die Zugkraft- Messwertaufnehmer entsprechen dem Stand der Technik und sind betriebssicher. Von dem Gerät können Restgefahren ausgehen, wenn es von ungeschultem Personal unsachgemäß eingesetzt und bedient wird.

1.4 EG Konformität

Die 1-Rollen Zugkraftmesswertaufnehmer entsprechen der:

EN 6100-6-3 EN 6100-6-2

Die Inbetriebnahme des Messwertaufnehmers ist so lange untersagt bis durch die Integration in das Endprodukt, die Anforderungen der aktuellen EG-Maschinenrichtlinie- und der Berufsgenossenschaft erfüllt sind.

1.5 ElektroG (Elektro- und Elektronikgerätegesetz)

Der Messwertaufnehmer gehört It. ElektroG vom 16. März 2005, Anhang I, zur Kategorie 9 "Überwachungs- und Kontrollgeräte", und ist ein B2B Produkt. Es wird die Ausnahmeregel nach §10 Absatz (2) beansprucht. Danach wird dem Nutzer auferlegt, das Gerät nach Ende der Nutzungsdauer im Sinne des ElektroG fachgerecht zu entsorgen. Unter diese Regelung fallen Geräte, die nach dem 13. August 2005 erstmals in Verkehr gebracht wurden. Diese Geräte haben eine Tensometric- Seriennummer, die größer ist als 25 08 00.

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Bedienungsanleitung

1-Rollen Radialkraftmesswertaufnehmer

zur Zugkraftmessung

2 Beschreibung

Mit einem **Tensometric** Radialkraftmesswertaufnehmer lässt sich auf einfache Weise ein Zugkraftmesssystem aufbauen.

Zur Zugkraftmessung am laufenden Material, wird eine kugelgelagerte Laufrolle auf die Lagerachse montiert. Diese Laufrolle wird nun in der Maschine so positioniert, dass sie das zu messende Material in einem definierten Winkel auslenkt. Dabei sind Umschlingungswinkel des zu messenden Materials um die Laufrolle von 3° bis 180° möglich. Die durch die Auslenkung resultierende Radialkraft an der Lagerachse, wird durch den Messwertaufnehmer erfasst. Sie ist der Zugkraft im zu messenden Material proportional.

Durch die Umschlingung des zu messenden Materials um die mittlere Laufrolle (der Messrolle), entsteht eine resultierende Kraft, die radial auf die Messrolle wirkt.

Diese Kraft wird über die Achse weitergeleitet, und erzeugt eine definierte Verformung eines Federkörpers. Über Dehnungsmessstreifen (DMS) erfolgt die Umwandlung der Verformung in ein elektrisches Signal.

Durch den bekannten Umschlingungswinkel wird der resultierenden Kraft, die Zugkraft im zu messenden Material zugeordnet.

1-Rollenmesswertaufnehmer sind zum stationären Einbau in die zu messenden Materiallinie konzipiert. Der Messwertaufnehmer wird an dem vorgesehenen Messort eingebaut, und an ein Auswertegerät angeschlossen. Das Auswertegerät kann z.B. eine Digitalanzeige, oder der Analogeingang einer SPS sein. Für seine Funktion benötigt der Messwertaufnehmer die Versorgungsspannung, die auf dem Typenschild angegeben ist.

Nach dem Kalibrieren ist der Messwertaufnehmer einsatzbereit.

Das Ausgangssignal des Messwertaufnehmers ist der gemessenen Radialkraft proportional.

2.1 WARNUNG!

Tensometric Messwertaufnehmer sind präzise Messelemente geeignet für Labor und Produktion. Dennoch sollte die Handhabung mit großer Sorgfalt erfolgen.

Die Bewegung der Lagerachse von '0 'bis 'Volllast 'beträgt nur wenige Zehntelmillimeter.

So kann ein unkontrolliert starker Daumendruck auf die Lagerachse, vor allem bei Messwertaufnehmern mit geringen Nennlasten, das Messsystem zerstören.

3 Inbetriebnahme:

Betriebsspannung des Netzgerätes kontrollieren.

Sie muss mit der Spannungsangabe auf dem Typenschild des Messwertaufnehmers übereinstimmen. Zum Messen der Spannung, ein Spannungsmessgerät mit einem ausreichenden Messbereich benutzen.

Netzgerät ausschalten.

Messwertaufnehmer an das Netzgerät anschließen.

Ein Spannungsmessgerät an den Spannungsausgang des Messwertaufnehmers anschließen.

Betriebsspannung einschalten.

Das Spannungsmessgerät am Signalausgang zeigt Messwerte an. Leichte Belastungen der Messrolle beeinflussen das Ausgangssignal.

Nach der Kalibrierung ist der Messwertaufnehmer einsatzbereit.

Tensometric-Messtechnik GmbH Derken 7 D - 42327 Wuppertal Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Bedienungsanleitung 1-Rollen Radialkraftmesswertaufnehmer zur Zugkraftmessung

4 Einbau

Der Messwertaufnehmer ist zum stationären Einbau, in die zu messenden Materiallinie konzipiert.

4.1 Einbaulage: Der Messwertaufnehmer kann sowohl in waagerechter als auch in

senkrechter Position betrieben werden, die Einbaulage ist beliebig.

4.2 Befestigung: Der Messwertaufnehmer muss zum Betrieb an einer Halterung befestigt sein.

Die Halterung muss die bei einer Messung, und die bei einer eventuellen Überlastung durch das

zu messenden Materials auftretenden Kräfte, aufnehmen können.

Bei Messwertaufnehmer mit einem Schraubgewinde M25x1,5 auf der Hülse, geschieht der Einbau in eine Bohrung Ø 25 mm. Die Arretierung wird mittels 2 Muttern SW32 und der Schlüsselfläche

SW19 auf dem Gehäuse vorgenommen.

4.3 Materialführung: Die Messrichtung, in der der Messwertaufnehmer seine größte Empfindlichkeit (seine Nennlast)

besitzt, ist mit roten Punkten (Pfeil) gekennzeichnet. Sie sollte in Richtung der resultierenden Kraft

zeigen.

Abweichungen von dieser Richtung erhöhen den Messbereich des Messwertaufnehmers.

4.4 Laufrichtung: Die Laufrichtung des zu messenden Materials kann sowohl von rechts nach links,

als auch von links nach rechts, über eine auf der Lagerachse montierten Messrolle erfolgen.

4.5 Umschlingungs-

winkel:

Der Umschlingungswinkel, den das zu messende Material um die Messrolle einnimmt,

bestimmt den Messbereich des Messwertaufnehmers mit.

Es sind Umschlingungswinkel von 3° bis 180° möglich.

In Abhängigkeit von der Dicke des zu messenden Materials kann er variieren.

Damit ändert sich auch die resultierende Kraft, die auf die Messrolle und damit auf das

im Messwertaufnehmer eingebautem Messsystem wirkt.

Während einer Messung muss der Umschlingungswinkel um die Messrolle

konstant gehalten werden.

5 Installationshinweise

Obwohl das Gerät einen hohen Schutz gegenüber elektromagnetischen Störungen aufweist, muss die Installation und Kabelverlegung ordnungsgemäß durchgeführt werden, damit in allen Fällen eine elektromagnetische Störsicherheit gewährleistet ist.

Beachten Sie die folgenden Installationshinweise.

Sie garantieren einen hohen Schutz gegenüber elektromagnetischen Störungen.

- Der Messwertaufnehmer muss an einer geerdeten Halterung angebaut sein. 1.
- 2. Verwenden Sie abgeschirmtes Kabel. Die Anschlussdrähte sollten so kurz wie möglich sein. Die Abschirmung des angebauten Kabels ist mit dem Messwertaufnehmergehäuse verbunden.
- Verlegen Sie Signal- und Steuerleitungen niemals zusammen mit Netzleitungen, Motorzuleitungen, Zuleitungen von 3. Zylinderspulen, Gleichrichtern, etc... Die Leitungen sollten in leitfähigen, geerdeten Kabelkanälen verlegt werden. Dies gilt besonders bei langen Leitungsstrecken, oder wenn die Leitungen starken Radiowellen durch Rundfunksender ausgesetzt sind.
- Montieren Sie den Messwertaufnehmer, und verlegen Sie Signalleitungen innerhalb von Schaltschränken so weit entfernt wie möglich von Schützen, Steuerrelais, Transformatoren und anderen Störguellen.
- Bei sehr starken elektromagnetischen Störungen im Bereich > 90 Mhz kann eine externe Filterung vorgenommen 5. werden. Dies kann durch die Installation von Ferrit-Hülsen erreicht werden. Die Hülsen sollten so nahe wie möglich am Gerät installiert werden.

Folgende Teile werden zur Unterdrückung elektromagnetischer Störungen empfohlen: Ferrit-Hülse mit einem Innendurchmesser von 4,5mm - 5,5mm, Länge min. 20mm

- 6. Lange Leitungen sind anfälliger für elektromagnetische Störungen als kurze Leitungen. Halten Sie deshalb die Leitungen so kurz wie möglich.
- 7. Vermeiden Sie das Schalten von induktiven Lasten, bzw. sorgen Sie für eine ausreichende Entstörung.

Tensometric-Messtechnik GmbH Derken 7

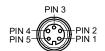
D - 42327 Wuppertal

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Bedienungsanleitung

1-Rollen Radialkraftmesswertaufnehmer

zur Zugkraftmessung

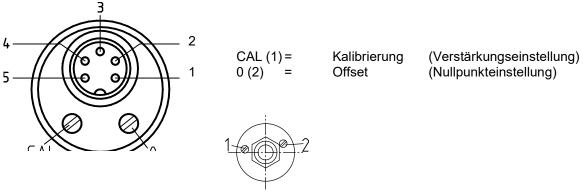


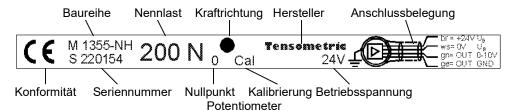
6 **Elektrischer Anschluss**

Betriebsspannung 5 V, 12 V, oder 24 V:

Blick auf Anschlussstecker

M16x1 M12 A-kodiert Male Anschlusskabel




In Klammern die Farben bei einem M12 Stecker

PIN 1 =	braun	(braun) =	+ Betriebsspannung
PIN 3 =	weiß	(blau) =	- Betriebsspannung
PIN 4 =	grün	(schwarz)=	Ausgangssignal 0-10V entsprechend 0-100% der Nennlast
PIN 2 =	gelb	(weiß) =	GND Ausgangssignal
PIN 5 =	grau	(grau) =	Option: Ausgangssignal 4-20mA max. Bürde 500Ω
	Schirm	(nicht) =	ist mit dem Gehäuse verbunden

Anschlussstecker und Einstellmöglichkeiten M1391-C, M1300-20

Typenschild:

Einstellmöglichkeiten am Messwertaufnehmer

Einstellungen mittels Schraubendreher

Zur Bedienung der Potentiometer "CAL" und "0" wird ein Schraubendreher durch die beschrifteten Bohrungen in die Schlitze der Potentiometer gesteckt. (Position von "CAL" und "0" siehe Anhang)

"CAL" Potentiometer Messsignalverstärkung. Es dient der Verstärkungseinstellung des eingebauten 7.1 Messverstärkers. Mit der Einstellung der Verstärkung, lässt sich der Messwertaufnehmer kalibrieren.

Einstellung per Schraubendreher:

Drehung im Uhrzeigersinn erhöht die Verstärkung

Drehung entgegen dem Uhrzeigersinn verringert die Verstärkung

"0" Potentiometer Nullpunkteinstellung. Mit Ihm lässt sich z.B. das Messrollengewicht tarieren. 7.2

Einstellung per Schraubendreher:

Drehung im Uhrzeigersinn erhöht den elektrischen Nullpunkt

Drehung entgegen dem Uhrzeigersinn verkleinert den elektrischen Nullpunkt

Tensometric-Messtechnik GmbH

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90 E-Mail: info@tensometric.de 1RO-MV-D

D - 42327 Wuppertal

8 Kalibrierung

Bei der Kalibrierung des Messwertaufnehmers, wird die an der Lagerachse anliegende Kraft, in ein definiertes Verhältnis zum Ausgangssignal, oder zur ziffernrichtigen Messwertanzeige gebracht.

Man unterscheidet 2 Kalibriermethoden

- Kalibrierung auf exakte Zugkraftmessung
- Kalibrierung auf exakte Radialkraftmessung

Werkseitig ist der Messwertaufnehmer auf exakte Radialkraftmessung kalibriert.

8.1 Beschreibung: Kalibrierung auf exakte Zugkraftmessung

Bei der Kalibrierung auf exakte Zugkraftmessung, wird die Kalibrierung mit dem Umschlingungswinkel und dem Material, das anschließend gemessen werden soll (Kabel, Draht, Folie usw.), vorgenommen.

Der Messwertaufnehmer wird in seinem realen Messort unter betriebsähnlichen Bedingungen kalibriert.

Diese Kalibriermethode ist vorzuziehen:

- bei geringen Umschlingungswinkeln (< 60°) des zu messenden Materials um die Messrolle.
- bei nicht genau bekanntem Umschlingungswinkel des zu messenden Materials um die Messrolle.
- bei Zugkraftmessungen an dicken Materialien.
- wenn die Richtung der resultierenden Kraft nicht mit der Messrichtung des Messwertaufnehmers übereinstimmt.

Eine ausreichende Länge des zu messenden Materials wird bei der Kalibrierung so in die Messrolle eingelegt, wie es dem Materialverlauf an der Messstelle entspricht.

Danach wird das zu messende Material mit einer bekannten Zugkraft belastet und das Ausgangssignal eingestellt. Die Belastung kann durch Gewichtssteine erfolgen.

8.2 Beschreibung: Kalibrierung auf exakte Radialkraftmessung

Bei der Kalibrierung auf exakte Radialkraftmessung wird die Kalibrierung mit Gewichten vorgenommen, die direkt an die Lagerachse gehängt werden. Diese Kalibriermethode ist in den meisten Fällen einfacher durchzuführen

blese Kalibriermen out exekte Zuekreftereenwer

als die Kalibrierung auf exakte Zugkraftmessung.

Voraussetzung bei dieser Methode ist die exakte Kenntnis des Umschlingungswinkels

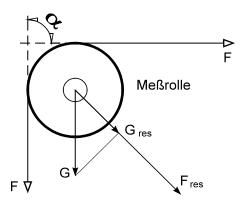
des zu messenden Materials um die Messrolle, im späteren Einsatzort.

8.3 Kalibrierprinzip:

Zur Kalibrierung des Messwertaufnehmers wird ein Spannungsmessgerät, mit einem ausreichenden Messbereich, an den Spannungs- Ausgang des Messwertaufnehmers angeschlossen.

Bei der Kalibrierung müssen mindestens zwei Kraft - Messzustände simuliert werden.

- Auf der Messrolle des Messwertaufnehmers ist keine Messkraft vorhanden.
 In diesem Zustand wird das Ausgangssignal des Messwertaufnehmers mit Potentiometer 2, bezeichnet mit " 0 " auf 0 V eingestellt.
- Die Messrolle wird mit einer bekannten Kraft beaufschlagt.
 Diese Kraft kann durch Gewichtssteine erzeugt werden, die entweder an das zu messende Material (Kalibrierung auf exakte Zugkraftmessung), oder direkt an die Lagerachse gehängt werden (Kalibrierung auf exakte Radialkraftmessung).


In diesem Zustand wird das der Kraft entsprechende Ausgangssignal bei Tensometric Messverstärker mit dem Potentiometer "CAL" eingestellt.

Tel. ++49-202 – 7052149-00 Fax ++49-202 – 7052149-90 E-Mail: info@tensometric.de 1RO-MV-D

8.4 Berechnung des Ausgangssignals:

Für die Berechnung des Ausgangssignals des Messwertaufnehmers, muss der Umschlingungswinkel des zu messenden Materials um die Messrolle, und die Nennlast des Messwertaufnehmers bekannt sein.

α = Umschlingungswinkel

F = Zugkraft des zu messenden Materials Fres = gemessene resultierende Zugkraft

G = Gewichtskraft der Messrolle

Gres = Anteil der Messrollengewichtskraft in Wirkungsrichtung des Messwertaufnehmers

Berechnung der resultierenden Kraft:

Fres = 2 * F * $\sin(\alpha/2)$

Fres kann auch der beiliegenden Tabelle entnommen werden.

Ausgangssignal = Fres / Nennlast d. Messwertaufnehmers * 10V

Beispiel bei einem Messwertaufnehmer mit Spannungs- Ausgangssignal 0-10V:

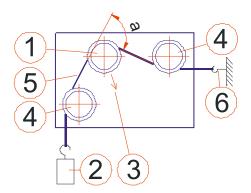
Zugkraft im zu messenden Material, erzeugt durch Gewichtssteine= 150NUmschlingungswinkel um die Messrolle= 30°Nennlast des Radialkraft- Messwertaufnehmers= 100N

Resultierende Kraft Fres = 2 * 150N * sin 15° = 77,65N Ausgangssignal Ua = 77,65N / 100N * 10V = 7,765V

Das Ausgangssignal kann jetzt bei Bedarf mit dem Potentiometer "CAL" am Messwertaufnehmer auch auf 7,5V eingestellt werden. So beträgt das das Ausgangssignal bei einer Zugkraft von 200 N = 10V

8.5 Kalibrierungsvorgang: Kalibrierung auf exakte Zugkraftmessung

Der Messwertaufnehmer wird in seinem Messort (in die Maschine) eingebaut.


Die Messrichtung des Messwertaufnehmers wird in Richtung der resultierenden Kraft,

die durch die Umschlingung um die Messrolle entsteht, ausgerichtet.

Die Messrolle wird auf die Lagerachse des Messwertaufnehmers montiert.

Betriebsspannung für den Messwertaufnehmer einschalten.

Mit einem Spannungsmessgerät das Spannungs- Ausgangssignal (des Messverstärkers) messen.

- 1 = Messrolle auf Messwertaufnehmer
- 2 = Gewicht
- 3 = Richtung der resultierenden Kraft
- 4 = Führungsrollen
- 5 = zu messendes Material
- 6 = Befestigung für zu messendes Material
- a = Umschlingungswinkel

Tensometric-Messtechnik GmbH Derken 7 D - 42327 Wuppertal Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Kalibrierungsvorgang:

- Die Messrolle des Messwertaufnehmers ist unbelastet:
 Mit Schraubendreher, das Potentiometer Nullpunkteinstellung "0" (4mA) betätigen.
 Im angeschlossenen Spannungsmessgerät, Ausgangsignal 0V oder Anzeige "000" (4,00mA) einstellen.
- 2. Die Messrolle (1) des Messwertaufnehmers wird mit einer bekannten Kraft belastet: Eine Länge des Materials (5), welches anschließend auch gemessen werden soll, in die Führungsrollen (4) (der Maschine), und in die Messrolle (1) (des Messwertaufnehmers) einlegen.

Durch Anhängen von Gewichten, an das zu messende Material, eine bekannte Zugkraft erzeugen. Die bekannte Zugkraft sollte bei ca. 80 % der Nennlast des Messwertaufnehmers liegen. Mit einem Spannungsmessgerät das Ausgangssignal messen. Sie muss die der Zugkraft entsprechende Ausgangsspannung entsprechen.

Entspricht das gemessene Ausgangssignal nicht der erzeugten Zugkraft, muss mit dem Potentiometer Messsignalverstärkung "CAL", die richtige Spannung des Ausgangssignals eingestellt werden.

3. Die Messrolle des Messwertaufnehmers entlasten.

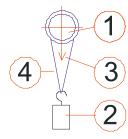
Das angeschlossene Spannungsmessgerät zeigt wieder 0V (4mA) an. Der Zugkraft - Messwertaufnehmer ist nun betriebsbereit Sind Abweichungen von 0V (4mA) vorhanden, so sind Punkte 1 bis 3 des Kalibriervorgangs 8.5 zu wiederholen.

Anmerkung: Erreicht die zu messende Zugkraft keine 80% des Messbereiches, so kann auch mit Kräften

kalibriert werden, die in dem Bereich der erwartenden Zugkraft liegen.

Das Ausgangssignal ist entsprechend umzurechnen.

8.6 Kalibrierungsvorgang: Kalibrierung auf exakte Radialkraftmessung


Der Messwertaufnehmer ist in einer stabilen Halterung eingebaut.

Die Messrichtung des Messwertaufnehmers zeigt nach unten.

Die Messrolle ist montiert.

Betriebsspannung für den Messwertaufnehmer einschalten.

Mit einem Spannungsmessgerät die Spannung des Spannungs- Ausgangssignals messen.

- 1 = Messrolle auf Messwertaufnehmer
- 2 = Gewicht
- 3 = Richtung der resultierenden Kraft
- 4 = Führungsrollen
- Die Messrolle des Messwertaufnehmers ist unbelastet:
 Mit Schraubendreher, das Potentiometer Nullpunkteinstellung "0" (4mA) betätigen.
 Ausgangssignal 0V oder Anzeige "000" (4,00mA) einstellen.
- Die Messrolle des Messwertaufnehmers wird mit einer bekannten Kraft belastet:
 Durch Anhängen von Gewichten, an die Messrolle, eine bekannte Zugkraft erzeugen.
 Die bekannte Zugkraft sollte bei 80 % der Nennlast des Messwertaufnehmers liegen.
 Mit einem Spannungsmessgerät die Spannung des Ausgangssignals messen.
 100% der Nennlast des Messwertaufnehmers, entspricht einem Ausgangssignal von 10V (20mA).
 Entspricht das Ausgangssignal nicht der erzeugten Radialkraft, muss mit dem Potentiometer Messsignalverstärkung "CAL", die errechnete Spannung des Ausgangssignals eingestellt werden.
- 3. Den Messwertaufnehmer entlasten.

Zeigt das angeschlossene Spannungsmessgerät wieder 0V (4mA) an, ist der Messwertaufnehmer betriebsbereit. Sind Abweichungen von 0V (4mA) vorhanden, so sind Punkte 1 bis 3 des Kalibriervorgangs 8.6 zu wiederholen.

Bedienungsanleitung 1-Rollen Radialkraftmesswertaufnehmer

zur Zugkraftmessung

8.7 Nullpunkteinstellung nach endgültiger Montage

Muss der Messwertaufnehmer zum Einbau in seine endgültige Position gedreht werden, so tritt eine Nullpunktabweichung auf.

Diese Abweichung kann durch eine erneute Nullpunkteinstellung mit Potentiometer "0" behoben werden. Die Kalibrierung muss nicht wiederholt werden.

8.8 Zeitintervall der Kalibrierung

Tensometric Messwertaufnehmer haben eine hohe Langzeitstabilität, so dass beim bestimmungsgemäßen Gebrauch eine Überprüfung der Kalibrierung alle 6 Monate ausreichend ist.

Überlastungen, die über den angegeben Überlastungsschutz hinausgehen, können die nachfolgenden Messwerte beeinflussen. Hat eine solche Überlastung stattgefunden, so zeigt sich, genauso wie bei einer Lageänderung des Messwertaufnehmers im einfachsten Fall eine bleibende Nullpunktverschiebung.

Ist die Nullpunktverschiebung in ihrer Höhe nicht akzeptabel, so ist auch vor einem abgelaufenen Zeitintervall die Kalibrierung vorzunehmen.

Lässt sich durch eine Kalibrierung die Messgenauigkeit nicht wiederherstellen, so ist das Gerät zur Überprüfung nach Tensometric einzuschicken.

9 Wartung

Tensometric Messwertaufnehmer sind wartungsfrei.

Die Kugellager in den Laufrollen sind auf Leichtgängigkeit zu prüfen. Defekte Kugellager sind auszutauschen. Die Laufflächen der Führungs- und Messrollen sind auf Verschleiß und Beschädigungen zu prüfen. Beschädigte Laufrollen sind auszutauschen. Das Anschlusskabel ist auf Beschädigungen zu prüfen.

9.1 Aus- und Einbau der Laufrolle

Beim Aus- und Einbau der Messrolle ist mit besonderer Sorgfalt vorzugehen. Die Messrolle ist über die Lagerachse direkt mit dem Messsystem verbunden. Das Messsystem ist gegen überhöhte Radialkräfte, so wie sie bei einer Zugkraftmessung vorkommen, geschützt.

Es besteht jedoch kein Überlastschutz gegen überhöhte Axialkräfte.

Zum Abziehen einer Laufrolle, ist je nach Ausführung, der Seegerring oder die Befestigungsschraube von der Stirnseite der Lagerachse zu entfernen.

Wenn die Messrolle nicht von Hand von der Lagerachse abzuziehen ist, so ist ein Abzieher zu benutzen. Axialkräfte die größer sind als die Nennlast des eingebauten Radialkraft- Messwertaufnehmers sind beim Abziehen und Aufschieben von Kugellager auf die Lagerachse zu vermeiden.

Ist eine Laufrolle auf die Lagerachse geschoben worden, so ist sie, je nach Ausführung mit dem Seegerring oder mit der Befestigungsschraube zu fixieren.

Tensometric-Messtechnik GmbH Derken 7 D - 42327 Wuppertal Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Bedienungsanleitung

1-Rollen Radialkraftmesswertaufnehmer

zur Zugkraftmessung

10 Umschlingungswinkeltabelle

Beispiel:

Die maximal zu messende Zugkraft beträgt 300N, Der Umschlingungswinkel um die Messrolle beträgt 65° lt. Tabelle beträgt die resultierende Kraft 107,46% = 322,38N

Jmschl.	Resultierende	Umschl.	Resultierende	Umschl.	Resultierende	Umschl.	Resultierende
Grad	%	Grad	%	Grad	%	Grad	%
1	1,745	45	76,537	90	141,421	135	184,776
2	3,490	46	78,146	91	142,650	136	185,437
3	5,235	47	79,750	92	143,868	137	186,084
4	6,980	48	81,347	93	145,075	138	186,716
5	8,724	49	82,939	94	146,271	139	187,334
6	10,467	50	84,524	95	147,455	140	187,939
7	12,210	51	86,102	96	148,629	141	188,528
8	13,951	52	87,674	97	149,791	142	189,104
9	15,692	53	89,240	98	150,942	143	189,665
10	17,431	54	90,798	99	152,081	144	190,211
11	19,169	55	92,350	100	153,209	145	190,743
12	20,906	56	93,894	101	154,325	146	191,261
13	22,641	57	95,432	102	155,429	147	191,764
14	24,374	58	96,962	103	156,522	148	192,252
15	26,105	59	98,485	104	157,602	149	192,726
16	27,835	60	100,000	105	158,671	150	193,185
17	29,562	61	101,508	106	159,727	151	193,630
18	31,287	62	103,008	107	160,771	152	194,059
19	33,010	63	104,500	108	161,803	153	194,474
20	34,730	64	105,984	109	162,823	154	194,874
21	36,447	65	107,460	110	163,830	155	195,259
22	38,162	66	108,928	111	164,825	156	195,630
23	39,874	67	110,387	112	165,808	157	195,985
24	41,582	68	111,839	113	166,777	158	196,325
25	43,288	69	113,281	114	167,734	159	196,651
26	44,990	70	114,715	115	168,678	160	196,962
27	46,689	71	116,141	116	169,610	161	197,257
28	48,384	72	117,557	117	170,528	162	197,538
29	50,076	73	118,965	118	171,433	163	197,803
30	51,764	74	120,363	119	172,326	164	198,054
31	53,448	75	121,752	120	173,205	165	198,289
32	55,127	76	123,132	121	174,071	166	198,509
33	56,803	77	124,503	122	174,924	167	198,714
34	58,474	78	125,864	123	175,763	168	198,904
35	60,141	79	127,216	124	176,590	169	199,079
36	61,803	80	128,558	125	177,402	170	199,239
37	63,461	81	129,890	126	178,201	171	199,383
38	65,114	82	131,212	127	178,987	172	199,513
39	66,761	83	132,524	128	179,759	173	199,627
40	68,404	84	133,826	129	180,517	174	199,726
41	70,041	85	135,118	130	181,262	175	199,810
42	71,674	86	136,400	131	181,992	176	199,878
43	73,300	87	137,671	132	182,709	177	199,931
44	74,921	88	138,932	133	183,412	178	199,970
		89	140,182	134	184,101	179	199,992
						180	200,000

D - 42327 Wuppertal

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90