


Date 01/2024 Instruction Manual

1 - Tensile roller force - transducer with integrated measuring amplifier

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

E-Mail: info@tensometric.com 1RO-MV-E

Area of validity

These operating instructions are valid for the following articles: 1 -Tensile roller force - transducer with integrated measuring amplifier

Series: LC-1390, M-1391-(C), M-1392, M-1300-20, M-1494-T....

Radialforce Sensor

Instruction Manual

Table of contents

1 1.1 1.2 1.3 1.4 1.5	Safety instructions Intended use Qualified personnel Residual dangers EC conformity ElektroG (Electrical and Electronic Equipment Act)
2 2.1	Description Warning
3	Commissioning
4.1 4.2 4.3 4.4 4.5	Installation Installation position Mounting Material guide Running direction Wrap angle around the measuring roller
5	Installation instructions
6	Electrical connections
7 7.1 7.2	Setting options on the transducer "CAL "0"
7.1	"CAL
7.1 7.2 8 8.1 8.2 8.3 8.4 8.5	"CAL "0" Calibration Description: Calibration to exact tensile force measurement Description: Calibration to exact radial force measurement Principle of calibration Calculation of the output signal Calibration procedure: Calibration to exact tensile force measurement
7.1 7.2 8 8.1 8.2 8.3 8.4 8.5 8.6	"CAL "0" Calibration Description: Calibration to exact tensile force measurement Description: Calibration to exact radial force measurement Principle of calibration Calculation of the output signal Calibration procedure: Calibration to exact tensile force measurement Calibration procedure: Calibration to exact radial force measurement Zero-point adjustment after final assembly
7.1 7.2 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	"CAL "0" Calibration Description: Calibration to exact tensile force measurement Description: Calibration to exact radial force measurement Principle of calibration Calculation of the output signal Calibration procedure: Calibration to exact tensile force measurement Calibration procedure: Calibration to exact radial force measurement Zero-point adjustment after final assembly Time interval for calibration Maintenance

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Instruction Manual

Radialforce Sensor

1 Safety instructions

Any person entrusted with the commissioning or operation of this device, must have read and understood the operating instructions and in particular the safety instructions.

To ensure safe operation, the device may only be used in accordance with the information in operating instructions. When using, there are also those for the the legal and safety regulations required in the respective application. This also applies to the use of accessories.

1.1 Intended use

The force transducers are used to convert forces into electrical signals. Any other use is considered improper.

These devices must not be used as the sole means of preventing dangerous conditions on machines and plants. Machines and systems must be designed in such a way that faulty conditions cannot occur to a dangerous situation for the operating personnel.

In particular, it must be ensured that incorrect inputs, a malfunction or a failure do not lead to a danger for man and machine.

1.2 Qualified personnel

The tensile force transducers may only be used by qualified personnel, exclusively in accordance with the technical data.

Qualified personnel are persons who are familiar with the installation, assembly, commissioning and operation of electronic measuring and have the qualifications corresponding to their activity.

1.3 Residual dangers

The tensile force transducers correspond to the state of the art and are safe to operate. Residual dangers can arise from the device if it is used and operated improperly by untrained personnel.

1.4 EC conformity

The force transducers comply with:

EN 61000-6-3 EN 61000-6-2

The commissioning of the transducer is forbidden until the integration into the end product fulfils the requirements of the current.

EC Machinery Directive and the Employer's Liability Insurance Association are fulfilled.

1.5 ElektroG (Electrical and Electronic Equipment Act)

According to the ElektroG of March 16, 2005, Annex I, the transducer belongs to category 9 "Monitoring and control devices" and is a B2B product.

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

E-Mail: info@tensometric.com 1RO-MV-E

The exemption rule according to §10 paragraph (2) is claimed. According to this the

user to dispose of the device properly at the end of its useful life in accordance with the ElektroG.

This regulation applies to devices that were placed on the market for the first time after August 13, 2005.

These devices have a serial number from Tensometric greater than 25 08 00.

Instruction Manual

Radialforce Sensor

2 Description

A tensile force measuring system can be easily set up with a Tensometric radial force transducer.

For tensile force measurement on running material, a ball bearing mounted roller is mounted on the bearing axle. This roller is then positioned in the machine so that it deflects the material to be measured at a defined angle. Angles of wrap of the material to be measured around the roller of 3° to 180° are possible.

The radial force on the bearing axis resulting from the deflection is measured by the transducer. It is proportional to the tensile force in the material to be measured.

The wrapping of the material to be measured around the centre roller (the measuring roller), a resultant force is generated which acts radially on the measuring roller.

This force is transmitted via the axis and generates a defined deformation of a spring body. Strain gauges are used to convert the deformation into an electrical signal.

Due to the known wrap angle, the resulting force, the tensile force in the material to be measured.

1-roll transducers are designed for stationary installation in the material line to be measured. The transducer is installed at the intended measuring location and connected to an evaluation unit. The evaluation unit can be, for example, a digital display or the analog input of a PLC. For its function, the sensor requires the supply voltage specified on the type of plate.

After calibration, the sensor is ready for use.

The output signal of the transducer is proportional to the measured radial force.

2.1 WARNING!

Tensometric transducers are precise measuring elements suitable for laboratory and production. Nevertheless, they should be handled with great care.

The movement of the bearing axis from '0' to 'full load' is only a few tenths of a millimetre.

Therefore, uncontrolled strong thumb pressure on the bearing axis, especially an transducers with low nominal loads, can destroy the measuring system.

3 Commissioning:

Check the operating voltage of the power supply unit.

It must correspond to the voltage specification on the type of plate of the measuring sensor.

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

E-Mail: info@tensometric.com 1RO-MV-E

To measure the voltage, use a voltmeter with a sufficient measuring range.

Switch off the power supply unit.

Connect the transducer to the power supply unit.

Connect a voltmeter to the voltage output of the transducer.

Switch on the operating voltage.

The voltmeter at the signal output displays measured values.

Slight loads on the measuring roller influence the output signal.

After calibration, the sensor is ready for use.

Radialforce Sensor

Instruction Manual

Installation 4

The sensor is designed for stationary installation in the material line to be measured.

4.1 Mounting position: The sensor can be operated in horizontal or vertical position; the mounting position is arbitrary.

4.2 Mounting: The transducer must be attached to a mounting bracket for operation.

The mounting must be able to absorb the forces that occur during a measurement and the forces

that may occur in the event of overloading by the material to be measured.

For transducers with an M25x1.5 screw thread on the sleeve, the mounting is done in a 25 mm hole. The locking is done by means of 2 nuts SW32 and the wrench flat SW19 on the housing.

4.3 Material guidance: The measuring direction in which the transducer has its greatest sensitivity (its nominal load) is

marked with red dots. It should point in the direction of the resulting force. Deviations from this direction increase the measuring range of the transducer.

4.4 Running direction: The running direction of the material can be from right to left,

as well as from left to right, via a measuring roller mounted on the bearing axis.

The wrap angle that the material to be measured takes around the measuring roller, also 4.5 Angle of wrap:

determines the measuring range of the transducer.

Wrap angles from 3° to 180° are possible.

It can vary depending on the thickness of the material to be measured.

This also changes the resulting force that acts on the measuring roller and thus on the measuring

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90 E-Mail: info@tensometric.com 1RO-MV-E

system installed in the transducer.

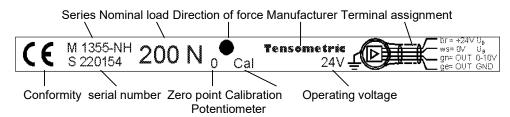
During a measurement, the wrap angle around the measuring roller have to be kept constant.

5 Installation instructions

Although the device has a high level of protection against electromagnetic interference, the installation and cable routing must be carried out properly, so that electromagnetic interference immunity is ensured in all cases.

Observe the following installation instructions.

They guarantee a high level of protection against electromagnetic interference.


- 1. The transducer must be mounted on a grounded support.
- 2. Use shielded cable. The connecting wires should be as short as possible. The shield of the attached cable is connected to the transducer housing.
- 3. Never lay signal and control line together with main line, motor supply line, supply line from cylinder coils, rectifiers, etc... The lines should be laid in conductive, grounded cable ducts. This applies in particular to long cable runs, or if the lines are exposed to strong radio waves from broadcast transmitters.
- 4. Mount the transducer and route signal line inside control cabinets as far as possible from contactors, control relays, transformers, and other sources of interference.
- 5. For very strong electromagnetic interference in the range > 90 Mhz, external filtering can be applied. This can be achieved by installing ferrite sleeves. The sleeves should be installed as close as possible to the unit. The following parts are recommended for suppressing electromagnetic interference: Ferrite sleeve with an inner diameter of 4.5 - 5.5 mm, length min. 20mm.
- Long cables are more susceptible to electromagnetic interference than short ones. 6. Therefore, keep the lines as short as possible.
- 7 Avoid switching inductive loads or ensure sufficient interference suppression.

Radialforce Sensor

Instruction Manual

Type example shield:

6 Electrical connections

Operating voltage 5 V, 12 V, or 24 V:

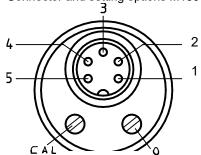
View of connector plug M16x1 and M12 A-coded Male

connection cable.

In brackets the colors for a M12 connector

PIN 1 = brown (brown) = + operating voltage PIN 3 = white (blue) = - operating voltage

PIN 4 = green (black)= output signal 0-10V corresponding to 0-100% of the nominal load


PIN 2 = yellow (white) = GND output signal

PIN 5 = grey (grey) = option: output signal 4-20mA max. load 500Ω

Shield (not) = is connected to the housing

Shield and housing must be connected to ground potential.

Connector and setting options M1391-C, M1300-20....

CAL (1) = Calibration (gain setting) 0 (2) = Offset (zero-point setting)

7 Setting options on the transducer

Settings by means of screwdriver.

To operate the "CAL" and "0" potentiometers, insert a screwdriver through the labelled holes in the slots of the potentiometers. (Position of "CAL" and "0" see appendix)

7.1 "CAL" potentiometer measuring signal gain. It is used to adjust the gain of the integreted measuring amplifier. By setting the gain, the transducer can be calibrated.

Adjustment by screwdriver:

Clockwise rotation increases the gain.

Turning counterclockwise decreases the amplification.

7.2 "0" potentiometer Zero-point adjustment. It can be used, for example, to tare the measuring roller weight.

Adjustment by screwdriver:

Clockwise rotation increases the electrical zero point.

Counterclockwise rotation decreases the electrical zero point.

Tensometric-Messtechnik GmbH

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

D - 42327 Wuppertal

Derken 7

Instruction Manual Radialforce Sensor

8 Calibration

During calibration of the transducer, the force applied to the bearing axis, is brought into a defined relationship to the output signal or to the numerically correct measured value display.

There are two different calibration methods.

- Calibration to exact tensile force measurement
- Calibration to exact radial force measurement

The transducer is factory calibrated for exact radial force measurement.

8.1 Description: Calibration for exact tensile force measurement

When calibrating for exact tensile force measurement, the calibration is performed with the wrap angle and the material that is to be measured subsequently (cable, wire, foil, etc.).

The transducer is calibrated in its real measuring location under conditions similar to operating conditions.

The following calibration method is preferable:

- in case of small wrap angles (< 60°) of the material to be measured around the measuring roller.
- if the wrap angle of the material to be measured around the measuring roller is not precisely known.
- for tensile force measurements on thick materials.
- if the direction of the resulting force does not correspond to the measuring direction of the transducer.

A sufficient length of the material to be measured is inserted into the measuring roller during calibration in such a way,

as it corresponds to the material course at the measuring point.

Then the material to be measured is loaded with a known tensile force and the output signal is adjusted. The load can be applied by weight stones.

8.2 Description: Calibration to exact radial force measurement

When calibrating for exact radial force measurement, the calibration is carried out with weights, which are hung directly on the bearing axis.

In most cases, this calibration method is easier to carry out than the calibration for exact tensile force measurement.

The prerequisite for this method is the exact knowledge of the wrap angle

of the material to be measured around the measuring roller, in the later place of use.

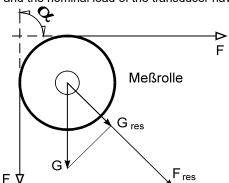
8.3 Calibration principle:

To calibrate the transducer, a tension measuring instrument, with a sufficient measuring range is connected to the voltage output of the transducer.

At least two force measuring conditions must be simulated during calibration.

- No measuring force is present on the measuring roller of the transducer.
 In this state, the output signal of the transducer is set to 0 V with potentiometer 2, marked "0".
- A known force is applied to the measuring roller.
 This force can be generated by weight stones.
 which are either attached to the material to be measured (calibration to exact tensile force measurement), or directly to the bearing axis (calibration to exact radial force measurement).

In this condition, the output signal corresponding to the force at from Tensometric measuring amplifier. is set with the potentiometer "CAL".


Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90

Instruction Manual Radialforce Sensor

8.4 Calculation of the output signal:

To calculate the output signal of the transducer, the wrap angle of the material to be measured around the measuring roller and the nominal load of the transducer have to be known.

= wrap angle

F = tensile force of the material to be measured

Fres = measured resultant tensile force

G = weight force of the measuring roller

Gres = proportion of the measuring roller weight force in the direction of action of the transducer

Calculation of the resulting force:

Fres = $2 * F * \sin(/2)$

Fres can also be taken from the enclosed table.

Output signal = Fres / nominal load of the transducer * 10V

Example for a transducer with voltage output signal 0-10V:

Tensile force in the material to be measured, generated by weight stones = 150N

Wrap angle around the measuring roller = 30°.

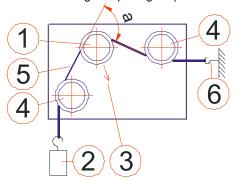
Nominal load of the radial force transducer = 100N

Resulting force Fres = $2 * 150N * \sin 15^\circ = 77,65N$ Output signal Ua = 77.65N / 100N * 10V = 7.765V

If required, the output signal can now also be set to 7.5V with the "CAL" potentiometer on the transducer. Thus, the output signal at a tensile force of 200 N = 10V

8.5 Calibration procedure: Calibration to exact tensile force measurement

The transducer is installed in its measuring location (in the machine).


The measuring direction of the transducer is aligned in the direction of the resulting force,

which is generated by the wrap around the measuring roller.

The measuring roller is mounted on the bearing axis of the transducer.

Switch on the operating voltage for the transducer.

Measure the voltage output signal (of the measuring amplifier) with a voltmeter.

1 = Measuring roller on transducer

2 = Weight

3 = Direction of the resulting force

4 = guide rollers

5 = material to be measured

6 = mounting for material to be measured

a = wrap angle

Instruction Manual Radialforce Sensor

Calibration procedure:

The measuring roller of the transducer is unloaded.
 Using a screwdriver, actuate the potentiometer zero-point setting "0" (4mA).
 In the connected voltmeter, set output signal 0V or display "000". (4.00mA)

The measuring roller (1) of the transducer is loaded with a known force.
 A length of the material (5) subsequently must be placed to be measured, in the guide rollers (4) (of the machine), and measuring roller (1) (of the transducer).

Create a known tensile force by attaching weights to the material to be measured. The known tensile force should be approx. 80 % of the nominal load of the transducer. Measure the output signal with a tension meter.

It must correspond to the output voltage corresponding to the tensile force.

If the measured output signal does not correspond to the generated tensile force, the correct voltage of the output signal must be set with the potentiometer measuring signal amplification "CAL".

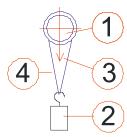
3. Relieve the load on the measuring roller of the transducer.

The connected tension measuring instrument shows 0V (4mA) again. The tensile force transducer is now ready for operation. If there are deviations from 0V, repeat points 1 to 3 of calibration procedure 8.5.

Note: If the tensile force to be measured does not reach 80% of the measuring range, it is also possible to calibrate with forces that are in the range of the expected tensile force.

The output signal must be converted accordingly.

8.6 Calibration procedure: Calibration for exact radial force measurement


The transducer is installed in a stable holder.

The measuring direction of the transducer points downwards.

The measuring roller is mounted.

Switch on the operating voltage for the transducer.

Measure the voltage of the voltage output signal with a voltmeter.

1 = Measuring roller on transducer

2 = Weight

3 = Direction of the resulting force

4 = Guide rollers

Tel. ++49-202 - 7052149-00 Fax ++49-202 - 7052149-90 E-Mail: info@tensometric.com

- The measuring roller of the transducer is unloaded: Using a screwdriver, actuate the potentiometer zero-point setting "0". Set output signal 0V (4mA) or display "000". (4.00)
- 2. The measuring roller of the transducer is loaded with a known force. Create a known tensile force by attaching weights, to the measuring roller. The known tensile force should be 80% of the nominal load of the transducer. Using a voltmeter, measure the voltage of the output signal. 100% of the nominal load of the transducer, corresponds to an output signal of 10V. (20mA) If the output signal does not correspond to the generated radial force, the calculated voltage of the output signal must be adjusted with the potentiometer measuring signal amplification "CAL".
- 3. Relieve the load on the transducer.

If the connected voltmeter shows 0V (4mA) again, the transducer is ready for operation. If there are deviations from 0V (4mA), repeat points 1 to 3 of calibration procedure 8.6.

Instruction Manual Radialforce Sensor

8.7 Zero-point adjustment after final installation

If the transducer has to be turned to its final position for mounting,

a zero-point deviation will occur.

This deviation can be eliminated by a new zero-point adjustment with potentiometer "0".

The calibration does not have to be repeated.

8.8 Calibration time interval

Tensometric transducers have a high long-term stability, so that a calibration check every 6 months is sufficient when used as intended.

Overloads that exceed the specified overload protection can influence the subsequent measured values. If such an overload has occurred, a permanent zero-point shift appears in the simplest case, just as with a change in position of the transducer.

If the zero-point shift is unacceptable in its amount, calibration must also be carried out before a time interval has elapsed.

9 Maintenance

From Tensometric Transducers are maintenance-free.

The ball bearings in the rollers must be checked for smooth running. Defective ball bearings must be replaced.

The running surfaces of the guide and measuring rollers must be checked for wear and damage.

Damaged rollers must be replaced. The connection cable must be checked for damage.

9.1 Removal and installation of the track roller

Special care must be taken when removing and installing the measuring roller.

The measuring roller is directly connected to the measuring system via the bearing axle.

The measuring system is protected against excessive radial forces, as they occur during tensile force measurement.

However, there is ${f no}$ overload protection against excessive axial forces.

To remove a track roller, depending on the version, the circlip or the fastening screw must be from the end face of the bearing shaft, depending on the design.

If the measuring roller cannot be pulled off the bearing shaft by hand, a puller must be used.

Axial forces greater than the nominal load of the installed radial force transducer must be avoided when pulling and pushing ball bearings onto the bearing axle.

If a track roller has been pushed onto the bearing axle, it must be fixed with the circlip or the fixing screw, depending on the design.

Tel. ++49-202 - 7052149-00

Fax ++49-202 – 7052149-90 E-Mail: info@tensometric.com 1RO-MV-E

10 Deflection angle to force

Example:

The maximum tensile force to be measured is 300N, the wrap angle around the measuring roller is 65° . according to. Table the resulting force is 107.46% = 322.38N

	Resultierende	Umschl.	Resultierende	Umschl.	Resultierende	Umschl.	Resultierend
Grad	%	Grad	%	Grad	%	Grad	%
1	1,745	45	76,537	90	141,421	135	184,776
2	3,490	46	78,146	91	142,650	136	185,437
3	5,235	47	79,750	92	143,868	137	186,084
4	6,980	48	81,347	93	145,075	138	186,716
5	8,724	49	82,939	94	146,271	139	187,334
6	10,467	50	84,524	95	147,455	140	187,939
7	12,210	51	86,102	96	148,629	141	188,528
8	13,951	52	87,674	97	149,791	142	189,104
9	15,692	53	89,240	98	150,942	143	189,665
10	17,431	54	90,798	99	152,081	144	190,211
11	19,169	55	92,350	100	153,209	145	190,743
12	20,906	56	93,894	101	154,325	146	191,261
13	22,641	57	95,432	102	155,429	147	191,764
14	24,374	58	96,962	103	156,522	148	192,252
15	26,105	59	98,485	104	157,602	149	192,726
16	27,835	60	100,000	105	158,671	150	193,185
17	29,562	61	101,508	106	159,727	151	193,630
18	31,287	62	103,008	107	160,771	152	194,059
19	33,010	63	104,500	108	161,803	153	194,474
20	34,730	64	105,984	109	162,823	154	194,874
21	36,447	65	107,460	110	163,830	155	195,259
22	38,162	66	108,928	111	164,825	156	195,630
23	39,874	67	110,387	112	165,808	157	195,985
24	41,582	68	111,839	113	166,777	158	196,325
25	43,288	69	113,281	114	167,734	159	196,651
26	44,990	70	114,715	115	168,678	160	196,962
27	46,689	71	116,141	116	169,610	161	197,257
28	48,384	72	117,557	117	170,528	162	197,538
29	50,076	73	118,965	118	171,433	163	197,803
30	51,764	74	120,363	119	172,326	164	198,054
31	53,448	75	121,752	120	173,205	165	198,289
32	55,127	76	123,132	121	174,071	166	198,509
33	56,803	77	124,503	122	174,924	167	198,714
34	58,474	78	125,864	123	175,763	168	198,904
35	60,141	79	127,216	124	176,590	169	199,079
36	61,803	80	128,558	125	177,402	170	199,239
37	63,461	81	129,890	126	178,201	171	199,383
38	65,114	82	131,212	127	178,987	172	199,513
39	66,761	83	132,524	128	179,759	173	199,627
40	68,404	84	133,826	129	180,517	174	199,726
41	70,041	85	135,118	130	181,262	175	199,810
42	71,674	86	136,400	131	181,992	176	199,878
43	73,300	87	137,671	132	182,709	177	199,931
44	74,921	88	138,932	133	183,412	178	199,970
		89	140,182	134	184,101	179	199,992
						180	200,000

Tel. ++49-202 – 7052149-00 Fax ++49-202 – 7052149-90